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Abstract-This paper introduces a modified Kirchhoff theory in which the transverse normal stress
is considered within the analysis of thin plates in bending. A consistent boundary element approach
based upon three degrees-of-freedom, which avoids the development of Kirchhoff forces at plate
corners, is presented for plates with arbitrary shapes and boundary conditions. Several case studies
have been analysed and the results were compared with corresponding analytical solutions. It is
clear that such an approach is accurate and easy to program. The transverse stress has little effect
on the plate deflection, but it can be considered in strength assessment.

INTRODUCTION

The boundary element method (BEM) has been developed immensely in the last two
decades and it has been extended to a large number of engineering applications, including
the analysis of thin and thick plates in bending [see EI-Zafrany (1993)]. An integral equation
formulation for plate-bending problems was introduced by Jaswon and Maiti (1968). A
presentation of this work with further developments was given later by Jaswon and Symm
(1977). An indirect boundary integral equation approach to the solution ofK.irchhoffplate
bending problems was presented by Altiero and Sikarskie (1978) and a similar analysis was
given by Tottenham (1979). Direct formulations for thin plates were presented by Bezine
and Gamby (1978) and Stern (1979). Several attempts aimed at improving the interpolation
functions within boundary elements appeared later in the literature [see Hartmann and
Zotemantel (1986)].

Most of the derivations found so far in the literature are based upon two degrees-of
freedom per boundary node. Such an approach usually results in the presence of additional
terms, known as Kirchhoff forces, at the boundary corners. These terms are functions of
boundary unknowns and contain singular functions, which makes their numerical treatment
and programming too difficult, as demonstrated by Debbih (1987).

Consider a plate in bending, with a thickness h and a midplane in the x-y plane.
According to the basic assumptions of the Kirchhoff theory, the lateral deflection w is
considered independent of z, and the transverse stresses are ignored. For homogeneous,
isotropic, elastic plate it can, therefore, be concluded that

i.e.

or in other words
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which is not an accurate governing equation for thin plates, as pointed out by McMillan
(1988).

If (1= is not zero, then the plane-stress equations adopted for thin plate analysis cannot
be used, and if e= is not zero, then one should consider the lateral deflection being a function
of (x,y,z).

This paper introduces a modified Kirchhoff theory in which the effect of the transverse
stress (1= is considered. A corresponding boundary element formulation based upon three
degrees-of-freedom per node is presented. Some case studies are analysed so as to illustrate
the merits of the theory presented.

REVIEW OF GOVERNING EQUATIONS

The analysis of thin plates in bending is based upon the assumptions of Kirchhoff's
theory [see Debbih (1989)], with the exception that the effect of the transverse normal stress
(1= is considered. Considering a plate, as described earlier, with the surface z = - h/2
subjected to a lateral force of intensity p, a distribution for (1= over the thickness can be
written as follows [see Reissner (1945)]:

(1)

where h is the plate thickness. The bending strain components can be approximated at any
point (x, y, z) inside the plate as follows:

(2)

and the other components of strain are negligible.
The generalized Hooke's law can be written, for such a case, in the following form:

2(1+v)
Yxy = E Lxy , (3)

where E is Young's modulus of elasticity and v is Poisson's ratio. Hence, it can be deduced
from eqns (2) and (3) that

Ez 82 w

Lxy = - (1 +v) 8x8y'

Bending moments per unit length are usually defined as follows:

(4)
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and it can, therefore, be shown that

where
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(5)

(6)

Equations of equilibrium over the plate thickness can be written in the following form :

oMx oMxy 0
ox +----ay--Qx =

oMxy aMy
a;- + oy - Qy = 0

oQx + oQy + = 0
ox oy p , (7)

where Qx and Qy represent shear forces per unit length, and it can deduced from eqns (6)
and (7) that

and

a 2 V op
Qx = -D ox (V w)+ (1-v),F ox

a 2 v op
Qy = -D:;-(V w)+ :;-

uy (1- v),P uy

(8a)

(8b)

(9)

DERIVAnON OF BOUNDARY INTEGRAL EQUAnONS

Consider a plate with its midplane defined in the x-y plane by means of a two
dimensional domain n, which has a boundary r. If there exists a solution w(x,y) which
satisfies the given boundary conditions, a weighted-residual expression can be deduced
from eqns (7) as follows:
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Ii [e*(aMx aMxy _ ) e*(aMxy aMy _ )
x a + 8 Qx + v 8 + a Qyn X Y . x y

(
8Q, 8Qy )]+w* 8; + 8y +p dxdy = 0, (10)

where e~, e;, w* are weighting functions, and since we have one unknown function w(x,y),
then those weighting functions should be related.

Using integration-by-parts theorems listed by EI-Zafrany (1993), the previous
expression can be reduced to the following weak form :

tr [e.:(lMx+mMxy)+e;~(IMxy+mMy)+w* (lQx +mQy)] dr

+ft w*pdxdy- ft[Qx(e: + a;:*) +Qy(e;+ a;*)]dXdY

f'r [ae.~ (8e~ 8e:) 8e1]- In Mxa; +Mxy 8y +~ +Mvay dxdy = 0, (11)

where (I, m) are the directional cosines of the outward normal to the boundary r. Defining
the functions M~, Mj, M:ysuch that

* _ (8e: 8e;*)Mx - D 8x +v 8y

* _ (I - v) (8e.~ 8e:)
Mxv - 2 D 8y + 8x '

then it can be proved from eqns (6) and (12) that

8e: (ae: 8e)*) 8ej
MX -8 +M.H -8 +-8 +M"-8x . y x y

(12)

_ 8ex (8ex 8ey) aey vp [a(J.~ 8e;~J= M:-a +M~v -a +-a +Mj-a + -a +-a 'x . y x . y (1 - v)A. 2 X Y

where

8w
e" = - ~8 .. y

Hence, eqn (11) can be modified as follows:

I'r [(aex * aex *) (8e
y * ae

y *)]- In ax Mx+ ay Mxy + ax M<y+ 8y My dxdy
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where

tx = IMx+mMxy

tv = IM,'Y +mM)'

Equation (13) can be simplified by using the following definitions for 8_~, 8,~:

(14)

ow*
8*= --

x ox '
8w*

8*- -v - -:1 ', uy
(15)

and by integrating the resulting expression by parts once more, then eqn (13) can be reduced
to

f'r [ (8M~ 8M~') (8Mh 8M}~)J+ JQ 8x 8x +---ay +8y ~+ 8y dxdy = 0, (16)

where

(17)

Defining two new functions <p_~, <Pt such that

(18)

and noticing that

where t~ = l<p~+ m<p~, then eqn (16) can be reduced to the following form:

ii [ V 2 ] ii (8<P~ 8<P~)+ p w*+ 2 V w* dxdy+ w -8- +-8- dxdy=O.
Q (1-V)A Q x y

Let the weighting function w* be defined, with respect to a point (x;, yJ, such that

(20)

(21)

where e" ey, e= are arbitrary parameters, the point (x;, Yi) is known as the source point, and
b(x-xj , y-yJ is a two-dimensional Dirac delta function. Hence, by using the properties
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of the delta functions (EI-Zafrany, 1993), eqn (20) can be reduced to the following boundary
integral equation:

c;[e,8x<xh yJ+e1'8y (x;,yJ+e:w(xh yJ] +fr (t~8x+ t~\ + t~) dr

= J (txO~+ t1'8~+ t:w*) dr+f'r p[W* + v 2 V 2W*]dXdY (22)Jr In (1- v)},

where

c; == ft b(x-xi,y- yJdxdy.

To facilitate the application of boundary conditions for plates with arbitrary shapes, eqn
(22) may also be rewritten in the following form:

ci[e,8x<x;,yJ + ey 8y (x;, yJ+ e:w(x;,yJ] +fr (M-:en+ M~8t + Q;:'w) dr

= J (Mn8:+ M nt 8t+ Qn w*) dr+f'r p[W* + v 2 V 2W*]dXdY, (23)Jr In (I-V)A

where

and similar definitions are employed for the starred parameters.

FUNDAMENTAL SOLUTION PARAMETERS

Defining a functionf* such that

W* = (ex :. +el': +e:)f*,ox . uy

then it can be deduced from eqns (18), (21) and (24) that

( a a ) 4 *_( a a )D e,~+e,-;-+e: V f - e,-;-+el'-;-+e: b(x-x;,y-yJ,
ox . uy uX . uy

(24)

(25)

which is satisfied for arbitrary values of en el' and eo, if f* satisfies the following equation:

(26)

The previous equation has the following general solution [see EI-Zafrany (1993)]:

(27)

where Ct, C2 are arbitrary integration constants and



A modified Kirchhoff theory for boundary element bending analysis of thin plates 2891

r = J(x-xY+(y-yY.

It can be deduced from eqn (24) and the definitions of other parameters, that

[
e~] [e, ]et = U e,.

w* e=

and

where U and Tare 3 x 3 matrices defined as follows:

(28)

(29)

02 02 a
--- ---

axon oyon an

U=
02 02 a f* (30)

oxot oyot at
a a

-
ax oy

a (0
2

0
2

) a ( 0
2

0
2

) ( 0
2

a
2

)-+v- oy an2 +v at2 -+v-
ox on2 ot2 on2 ot2

03 03 02
(31)T= -D (l-v)o a a (I-v) oyonot (l-v)- f*.x n t on at

02 02 a 2__ \72 __ \72 -\7
axon oyon an

Notice also that

of af af
-=-+man - ox ay

of == -m af +l of
at ox ay

and, if no is a unit vector defined in terms of its directional cosines as follows,

(32)

(33)

then the rate of change of a functionfwith respect to a length measured in fio direction can
be expressed as

(34)

The following theorems were employed for the derivation of explicit forms for U and T
matrices:
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ar r I ar
- = -(logr--+c l )ano 4nD 2 ano

(35)

(36)

and a listing of those explicit expressions, based upon CI = C2 = 0, is in the Appendix.

REDUCTION OF BOUNDARY INTEGRAL EQUATIONS

If a function h* is defined such that

then it can be deduced by direct integration, and ignoring the resulting integration constants,
that

(38)

For arbitrary values of en e, and eo, and cases with uniformly- or linearly-distributed
loading, one can reduce eqn (23) to the following simultaneous boundary integral equations,
with respect to the source point (x;, y;):

C2l OxCx"YJ +C22 e,(Xi,YJ +C23 W(Xi,Yi) +fr (T I2 e" + T22 et + T32 w)dr

= fr (U I2 M" +U22 Mfl/+ U32 Q,,)dr +~r(C~P-L~:~)dr (39b)

where
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and

og*
L*=-

x ax'
og*

L*=-
y oy' L:=g*

(40)

(41)

v
g* = h*+ f*.

(I-v»)?
(42)

Notice also that additional terms are added to take into consideration comer effects or
jump functions [see Husain (1989)], and t represents the boundary without comers, i.e.
without any comer effect on contour integrals.

If there exists a concentrated shear force F= acting at a point (xj,y) inside the domain
n, then a two-dimensional Dirac delta function can be employed to define an equivalent
distributed loading q, as follows:

(43)

Hence, the corresponding domain integrals can be eliminated and represented by simple
terms, using the following property of the Dirac delta function [see EI-Zafrany (1993)J:

ff!(X,Y)J(X-Xj,Y- Yj) dx dy = f(xj,y). (44)

Internal stresses and moments can be calculated from boundary integral equations
derived from eqns (39), and further details about the numerical treatment of the boundary
integral equations for such problems can be found in Debbih (1989).

APPLICATIONS

A FORTRAN program was developed using the modified Kirchhoff theory and
constant boundary elements. Several examples demonstrating different boundary and load
ing conditions were analysed using the developed programs on a PC, and the boundary
element results were compared with corresponding analytical solutions, as summarized
next.

Clamped circular plate under uniformly-distributed loading
A circular plate with the following properties was considered:

outer radius ro = O.5m

plate thickness h = 0.05 m

Young'smodulusE = 2.1 x 108 kNjm2

Poisson's ratio v = 0.3

loading intensity p = 1200kNjm2
•

The results are represented in terms of non-dimensional parameters, where

qrri
wO=j)' Mo=qr~.
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Fig. I. Deflection of clamped circular plate under uniformly-distributed loading.
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Fig. 2. Moment M, for a clamped circular plate under uniformly-distributed loading.
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Boundary element results were evaluated at internal nodes on a radial line from the
centre of the plate to its outer surface, and the resulting parameters were compared with
corresponding analytical solutions given by Debbih (1989), as shown in Figs 1and 2, which
illustrate non-dimensional radial distributions of the lateral deflection wand the moment
M" respectively. The values of w/wo and M,/Mo at the plate centre, as obtained from
boundary element results and analytical solutions, are also demonstrated in Table 1. It is

Table I. Non-dimensional deflection and moment at the centre of the clamped circular plate

Analytical
Kirchhoff

Analytical Mod.
Kirchhoff

BEM
Kirchhoff

BEM Mod.
Kirchhoff

w/wo
M,/Mo

0.0156
0.8125

0.0156
0.8168

0.0165
0.8245

0.0159
0.8087
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Fig. 3. Deflection of simply-supported circular plate under concentrated loading.
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Fig. 4. Moment M, of simply-supported circular plate under concentrated loading.

clear that the BEM results agree very well with analytical solutions, and the modified theory
has led to accurate boundary element results.

Simply-supported circular plate under concentrated loading
This case is similar to the previous one but the plate is subjected to a concentrated

shear force at its centre, F = 300 kN, and

Fd
Wo = D' M o == F.

Non-dimensional radial distributions of wand M, are shown in Figs 3 and 4, respectively.
This case proves that the procedure suggested for dealing with concentrated forces is
accurate, and one can obtain a value of M, approaching infinity at the point of load
application.
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Fig. 5. Deflection of simply-supported rectangular plate under concentrated loading.
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Fig. 6. Slope of simply-supported rectangular plate under concentrated loading.

Simply-supported rectangular plate under concentrated loading
This case represents a rectangular plate with its midplane defined by means of the

following domain:

Q={(x,y); O~x~l, 0~y~0.5}.

The four sides of the plate are simply supported, i.e. M n = M nt = 0, w = 0 over the
boundary of the plate, and other properties are similar to the previous case.

Boundary element results are considered at internal nodes on the line y = 0.25, and
they are plotted against corresponding analytical solutions, as shown in Figs 5, 6 and 7,
which indicate the distribution ofthe deflection w, slope awjax and moment M x , respectively.
The displayed boundary element results prove to be very accurate compared with analytical
solutions, and hence this case demonstrates the accuracy and efficiency of the BEM based
upon three degrees-of-freedom for plates with corners.
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Fig. 8. Deflection of rectangular plate under corner forces.

Rectangular plate under corner forces
This case is similar in geometry and material properties to the previous case, but it has

one of the shortest edges (x = 0) clamped, and all other edges are free. The free corners are
subjected to two concentrated forces, each of value F = 500 kN. The significance of such a
case for the BEM is that it has corners, free edges and singular corner forces, which allow
the terms of the boundary integrals containing singular and divergent integrals to be tested.
The deflection distribution along the centre line (y = 0.25) is plotted against an analytical
solution based upon engineering beam theory, as shown in Fig. 8, which proves the accuracy
and reliability of the BEM formulations presented in this work.

Simply-supported rhombic plate under uniformly-distributed loading
This case has been selected to test the performance of the presented boundary element

theory in the analysis of skew plates. It represents a simply-supported rhombic plate with
thickness h = 0.05 m, and a midplane as shown in Fig. 9. The Young's modulus of the
plate material is 3.0 x 107kN/m2

, its Poisson's ratio is equal to 0.2, and the plate is subjected
to a uniformly-distributed loading of intensity p = 5000 kN/m2

•

The maximum deflection and moment, which occur at the plate centre, are represented
as follows [see Timoshenko and Krieger (1970)]:
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Fig. 9. Midplane of rhombic plate.

Table 2. Coefficients for maximum deflection and bending moment for the rhombic
plate

._-_...._----------_...._---

---- ---_..-_......._--

Timoshenko and Krieger (1970)
Boundary element analysis

0.00796
0.00788

0.0772
0.0775

The values of (x, f3 as obtained from boundary element analysis are tabulated against
corresponding published values, as shown in Table 2, which proves that the boundary
element theory presented in this work can be employed accurately for the analysis of skew
plates.

CONCLUSIONS

It is clear from the presented results that the BEM derivations based upon three
degrees-of-freedom are accurate and have led to simple programs avoiding the estimation
of unknown Kirchhoff forces at the plate corners, and yielding very accurate results for
plates with free-edge conditions irrespective of the divergent integrals encountered in the
analysis. The effect of the transverse stress on deflection and moments is very small, but
the stress is evaluated during the BEM analysis and can, therefore, be considered in the
assessment of the plate strength. The methodology employed in the derivation of fun
damental solutions and boundary integral equations is consistent and much simpler than
any existing publication in this area. Using such a simplified theory, the authors have
managed to develop simple boundary element programs which run successfully on pes.
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APPENDIX

Terms of the U matrix

I [ or or]
V,p = - 8nD (ri,' ip)(2Iog r- I) +2 on, oxp

r or
V,3 = -- -(2Iogr-l)

8nD on,

r or
V 3P = 8nD oXp (2Iogr-l)

r'
V 33 = 8nD (log r-I).

Terms of the T matrix

I [ A or or]T 3p = --- (ri'ip)-2--
4nr' on oxp

T 13 = - 4~[(I +V)(IOgr-±)+v+(I-V)(;:)']
(I-v) or or

T23 = -~ onal

I or
T 33 = -2nr on'

where

CI=I,2, /3=1,2

or or or or _
- == - = (Vr)'ri, - == - = (Vr)·t.
on, on on, ot

SAS 31:21-8


